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Exercise. Let 0 : R — R be a non-negative measurable function. Define a function f : R — C by
letting
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Prove that

1. The function f is well defined (that is the integral of (1) exists) and continuous for all z € R.

Ssowion.

Y

e
is well defined <— ———— is integrable
/ 1+y?+o(y) &
my
<— ——dy <
/oo 1+ y2+0o(y) v
S — = - since Y| =1 an ,o(y) >
—oo |1+ y2+ 0(y) Y —o L+ Y2+ 0o(y) 4 vo= Y
< /_oo T dey since o(y) > 0
=7
< 0

Thus, f is well-defined.
Dominated Comvergence Theorem: Let {f,} be a sequence in L' s.t.

i) fn— [ ae and
ii) Ja non-negative g € L' s.t. |f,| < g a.e. Vn
Then f € L' and [ f = lim,_00 [ fn

i) Let h(y) = trorerr 204 ha(y) = mrormagy st (za) C R and (z,) = o,

Then lim,, o h,(y) = h(y) since e is continuous relative to f.

for all n

ii) Also, Ihn(y)|=’ T ‘:
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And, as shown above, ﬁ us a non-negative integrable function.

Thus, by the Dominated Convergence Theorem,
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(Solution continued on next page)
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So f is continuous at g, but o € R was arbitrary.
Thus, f is continuous for all x € R.




